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PREFACE

The decade of deep learning (DL) has witnessed an unprecedented surge in

real-world applications, igniting a fervent pursuit of solutions that transcend the

confines of traditional datasets. These datasets, meticulously curated with bal-

anced classes and faithful representations of test set distributions, often fall short

of encapsulating the full spectrum of real-world scenarios. Consequently, the im-

perative emerges to cultivate robust algorithms capable of navigating the complex-

ities of imbalanced datasets and unforeseen testing conditions, characterized by

distributional shifts between training and testing environments. Label prior and

non-semantic likelihood discrepancies loom large among these shifts, as extensively

discussed in contemporary literature.

In response to these challenges, researchers have endeavored to fortify DL

algorithms against the perils of long-tailed rare categories in segmentation tasks.

Strategies such as resampling, data augmentation, logit adjustment, and domain

adaptation have been vigorously pursued. However, the persistent imbalance

among classes within samples poses a formidable hurdle, with existing methodolo-

gies proving insufficient in addressing the intricacies of long-tailed segmentation.

Moreover, the absence of research addressing imbalances within mask representa-

tions further exacerbates the problem.

In light of these dilemmas, this thesis embarks on a comprehensive explo-

ration of long-tailed segmentation, unraveling nuanced insights into imbalanced

mask representations and model uncertainty. Building upon these insights, the

thesis introduces Pixel-wise Adaptive Training (PAT) as a pioneering solution to

the long-standing challenges of long-tailed rare category problems in segmenta-

tion. PAT comprises two pivotal contributions: Class-wise Gradient Magnitude

Homogenization and Pixel-wise Class-Specific Loss Adaptation (PCLA). These in-

novations not only address imbalanced learning stemming from disparities in object

sizes and pixel-wise loss contributions but also offer a paradigm shift in mitigating

the adverse effects of model uncertainty.

Through meticulous experimentation and analysis, this thesis endeavors to

shed light on the efficacy and practical implications of PAT in the realm of long-

tailed segmentation. By elucidating the intricacies of imbalanced learning and

proposing novel methodologies to mitigate its impact, this work aims to propel the

field towards more robust and equitable solutions, poised to tackle the challenges

of real-world applications head-on.
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ABSTRACT

Beyond class frequency, we recognize the impact of class-wise relationships

among various class-specific predictions and the imbalance in label masks on long-

tailed segmentation learning. To address these challenges, we propose an innovative

Pixel-wise Adaptive Training (PAT) technique tailored for long-tailed segmenta-

tion. PAT has two key features: 1) class-wise gradient magnitude homogenization,

and 2) pixel-wise class-specific loss adaptation (PCLA). First, the class-wise gra-

dient magnitude homogenization helps alleviate the imbalance among label masks

by ensuring equal consideration of the class-wise impact on model updates. Second,

PCLA tackles the detrimental impact of both rare classes within the long-tailed

distribution and inaccurate predictions from previous training stages by encourag-

ing learning classes with low prediction confidence and guarding against forgetting

classes with high confidence. This combined approach fosters robust learning while

preventing the model from forgetting previously learned knowledge. PAT exhibits

significant performance improvements, surpassing the current state-of-the-art by

2.2% in the NyU dataset. Moreover, it enhances overall pixel-wise accuracy by

2.85% and intersection over union value by 2.07%, with a particularly notable dec-

lination of 0.39% in detecting rare classes compared to Balance Logits Variation,

as demonstrated on the three popular datasets, i.e., OxfordPetIII, CityScape, and

NYU. The code is available at https://github.com/KhoiDOO/ibla.

https://github.com/KhoiDOO/ibla


CHAPTER 1. INTRODUCTION

The integration of deep learning (DL) into real-world applications has sparked

a renewed and widespread enthusiasm for research that extends beyond meticu-

lously crafted datasets, which typically feature balanced classes and accurate rep-

resentations of the test set distribution. However, it remains highly doubtful that

it is feasible to foresee and construct datasets that consistently encompass all po-

tential scenarios. Therefore, it is of paramount importance to explore and develop

robust algorithms that are capable of performing well on imbalanced datasets and

unforeseen circumstances during the testing phase. These challenges can be classi-

fied as distributional shifts between the training and testing conditions. Notably,

these shifts include label prior shift and non-semantic likelihood shift, as discussed

in the literature [11].

Many researchers attempt to propose robust algorithms against long-tailed

rare categories in segmentation via resampling [12, 13], data augmentation [8, 14],

logits adjustment (LA) [15, 16, 17, 18, 19], domain adaptation (DA) [20, 21, 22].

However, the imbalance among classes inside samples in segmentation remains a

critical issue. Existing efforts predominantly concentrate on addressing sample im-

balance within classes, with limited research devoted to long-tailed segmentation.

The data augmentation and sampling method prove inadequate as it can neither

augment nor sample classes within masks. Additionally, designing model architec-

tures for this purpose is highly resource-intensive and computationally demanding.

Recognizing these challenges, we delve into existing research on long-tailed

segmentation and uncover intriguing insights. 1) Imbalanced mask represen-

tations: beyond the difficulties posed by rare objects, imbalanced mask represen-

tations occur when some masks dominate the learning process, leading to a bias

towards recognizing dominant classes and neglecting minority classes. 2) Model

uncertainty and degradation: models facing uncertainty often produce low-

precision channel-wise logits, leading to biased gradient updates. These updates

favor incorrect label predictions and ignore progress toward the true labels, further

degrading performance.

Building upon these insights, we introduce Pixel-wise Adaptive Training (PAT),

a novel approach for addressing long-tailed rare category problems in segmenta-

tion. PAT comprises two key contributions: 1) Class-wise Gradient Magnitude

Homogenization: We address the imbalanced learning caused by differences in

object size across classes by dividing the loss by the corresponding class mask’s size.

1



This effectively equalizes the influence of each class on the learning process. 2)

Pixel-wise Class-Specific Loss Adaptation (PCLA): This component focuses

on pixel-wise predicting vectors (PPVs) within each pixel (see Fig. 4.3). By ex-

amining the PPVs, we can evaluate how individual channels influence the learning

process by analyzing the logit predictions. Specifically, by employing an inverted

softmax function, we can strike a balance between two factors: the presence of

long-tailed rare objects and the impact of insufficient loss contribution on the joint

loss function. This equilibrium enables us to determine coefficients that prioritize

learning in classes with rare objects or those with minimal contributions to the joint

loss induced by the wrong predictions of the model from previous low-performance

learning progress. Consequently, we address the issue of imbalanced learning stem-

ming from both current training samples and previously learned imbalances in the

models.

2



CHAPTER 2. RELATED WORKS

There are three main categories: class re-balancing, information augmenta-

tion, and module improvement. In this table, “CSL" indicates class-sensitive learn-

ing; “LA" indicates logit adjustment; “TL" represents transfer learning; “Aug"

indicates data augmentation; “RL" indicates representation learning; “CD" indi-

cates classifier design, which seeks to design new classifiers or prediction schemes

for long-tailed recognition; “DT" indicates decoupled training, where the feature

extractor and the classifier are trained separately; “Ensemble" indicates ensemble

learning based methods. In addition, “Target Aspect" indicates from which aspect

an approach seeks to resolve the class imbalance (refers to Table 2.1).

2.0.1 Re-sampling

Conventional deep network training often relies on random sampling, which

overlooks class imbalances in long-tailed learning, resulting in biased models. Re-

sampling methods like Dynamic Curriculum Learning (DCL), Long-tailed Object

Detector with Classification Equilibrium (LOCE), and VideoLT dynamically ad-

just sampling rates based on model performance. Meta-learning-based approaches

like Balanced Meta-softmax and Feature Augmentation and Sampling Adapta-

tion (FASA) estimate optimal sampling rates through meta-learning. Recommen-

dations include using progressively-balanced sampling when label frequencies are

known or utilizing training statistics for real-world applications. These methods

provide a foundation for designing multi-level re-sampling strategies to tackle com-

plex imbalance scenarios ([23], [24], [25], [26], [27], [28]).

2.0.2 Class-sensitive Learning

Conventional deep network training with softmax cross-entropy loss ignores

class imbalance, leading to uneven gradients across classes. Class-sensitive learning

aims to adjust training loss values for different classes to mitigate this imbalance.

This approach includes re-weighting strategies, where loss values are adjusted us-

ing various methods such as weighted softmax, class-balanced loss, and balanced

softmax based on training label frequencies or prediction hardness. Additionally,

methods like Focal loss use class prediction hardness for re-weighting, while Meta-

Weight-Net learns class weights from data. These techniques aim to rebalance

training effects and address class imbalance ([29], [30], [31], [32], [33], [34], [35],

[36], [37], [26], [38], [39], [40]).

3



2.0.3 Logit Adjustment

Logit adjustment addresses class imbalance by modifying prediction logits in

biased deep models. Recent studies have analyzed logit adjustment using training

label frequencies, demonstrating its Fisher consistency in minimizing average per-

class error. RoBal adjusts the cosine classifier based on training label frequencies,

but these methods falter when label frequencies are unknown. UNO-IC learns

logit offsets from a balanced meta-validation set, while DisAlign employs adaptive

calibration functions for logit adjustment. LADE adjusts model outputs based

on test label frequencies, making it suitable for agnostic test class distributions,

though its practicality is limited by the availability of test label frequencies ([41],

[42], [43], [44], [45], [46]).

2.0.4 Data Augmentation

Data Augmentation, a technique to expand and enhance datasets through

predefined transformations, plays a crucial role in mitigating class imbalance in

long-tailed learning. Two main approaches have been explored: transfer-based

augmentation and non-transfer augmentation. In transfer-based augmentation,

knowledge from head classes is transferred to augment tail-class samples. For

example, Major-to-Minor translation (M2m) translates head-class samples to aug-

ment tail classes, while methods like Feature Transfer Learning (FTL) and LEAP

enhance tail-class feature spaces based on head-class knowledge of intra-class vari-

ance. Rare-class Sample Generator (RSG) dynamically estimates feature centers

to augment tail samples, and Online Feature Augmentation (OFA) combines class-

specific features of tail-class samples with class-agnostic features from head-class

samples. Non-transfer augmentation focuses on adapting conventional methods to

long-tailed problems. Classic techniques like SMOTE and recent approaches like

MiSLAS and Remix leverage data mixup to address class imbalance. Alternatively,

methods like FASA and Meta Semantic Augmentation (MetaSAug) generate new

data features based on class-wise Gaussian priors or semantic directions estimated

from class-conditional statistics, effectively augmenting tail classes ([47], [48], [49],

[50], [51], [52], [53], [54], [55], [56], [27], [57])

2.0.5 Representation Learning

Long-tailed learning methods enhance representation learning through metric

learning, prototype learning, and sequential training paradigms. In metric learn-

ing, techniques like Large Margin Local Embedding (LMLE) utilize quintuplet

sampling to learn discriminative feature spaces, maintaining both intra-cluster and

inter-class margins. Class Rectification Loss (CRL) addresses sample differences

4



between head and tail classes by constructing more hard-pair triplets for tail classes.

Range loss innovates representation learning by considering overall distances among

all sample pairs within mini-batches, mitigating data number imbalance across

classes. Contrastive learning approaches such as KCL and Parametric Contrastive

learning (PaCo) aim to learn balanced feature spaces, while DRO-LT extends this

with distribution robust optimization for improved robustness to distribution shift.

Prototype learning methods like Open Long-Tailed Recognition (OLTR) and In-

flated Episodic Memory (IEM) learn class-specific feature prototypes to handle

long-tailed recognition, with IEM dynamically updating memory blocks for bet-

ter representation of real data distribution. Sequential training methods such as

Hierarchical Feature Learning (HFL) and Unequal-training hierarchically cluster

objects or treat head-class and tail-class subsets differently to gradually transfer

knowledge and enhance inter-class discrimination ([58], [59], [60], [61], [62], [63],

[64], [65], [66], [67], [68]).

5



Table 2.1 Existing deep long-tailed learning methods in the top-tier conferences.

Method Year
Class Re-balancing Augmentation Module Improvement

Target Aspect
Re-sampling CSL LA TL Aug RL CD DT Ensemble

LMLE [58] 2016 ✓ feature

HFL [67] 2016 ✓ feature

Focal loss [39] 2017 ✓ objective

Range loss [60] 2017 ✓ feature

CRL [59] 2017 ✓ feature

MetaModelNet [69] 2017 ✓

DSTL [70] 2018 ✓

DCL [23] 2019 ✓ sample

Meta-Weight-Net [40] 2019 ✓ objective

LDAM [71] 2019 ✓ objective

CB [37] 2019 ✓ objective

UML [72] 2019 ✓ feature

FTL [50] 2019 ✓ ✓ feature

Unequal-training [68] 2019 ✓ feature

OLTR [65] 2019 ✓ feature

Balanced Meta-Softmax [26] 2020 ✓ ✓ sample, objective

Decoupling [73] 2020 ✓ ✓ ✓ ✓ ✓ feature, classifier

LST [74] 2020 ✓ ✓ sample

Domain adaptation [75] 2020 ✓ objective

Equalization loss (ESQL) [29] 2020 ✓ objective

DBM [76] 2020 ✓ objective

Distribution-balanced loss [77] 2020 ✓ objective

UNO-IC [44] 2020 ✓ prediction

De-confound-TDE [78] 2020 ✓ ✓ prediction

M2m [49] 2020 ✓ ✓ sample

LEAP [51] 2020 ✓ ✓ ✓ feature

OFA [53] 2020 ✓ ✓ ✓ feature

SSP [79] 2020 ✓ ✓ feature

LFME [80] 2020 ✓ ✓ sample, model

IEM [66] 2020 ✓ feature

Deep-RTC [81] 2020 ✓ classifier

SimCal [28] 2020 ✓ ✓ sample, model

BBN [82] 2020 ✓ sample, model

BAGS [83] 2020 ✓ sample, model

VideoLT [25] 2021 ✓ sample

LOCE [24] 2021 ✓ ✓ sample, objective

DARS [84] 2021 ✓ ✓ ✓ sample, objective

CReST [85] 2021 ✓ ✓ sample

GIST [86] 2021 ✓ ✓ ✓ classifier

FASA [27] 2021 ✓ ✓ feature

Equalization loss v2 [87] 2021 ✓ objective

Seesaw loss [88] 2021 ✓ objective

ACSL [89] 2021 ✓ objective

IB [90] 2021 ✓ objective

PML [91] 2021 ✓ objective

VS [38] 2021 ✓ objective

LADE [46] 2021 ✓ ✓ objective, prediction

RoBal [43] 2021 ✓ ✓ ✓ objective, prediction

DisAlign [45] 2021 ✓ ✓ ✓ objective, classifier

MiSLAS [55] 2021 ✓ ✓ ✓ objective, feature, classifier

Logit adjustment [42] 2021 ✓ prediction

Conceptual 12M [92] 2021 ✓

DiVE [93] 2021 ✓

MosaicOS [94] 2021 ✓

RSG [52] 2021 ✓ ✓ feature

SSD [95] 2021 ✓ ✓

RIDE [96] 2021 ✓ ✓ model

MetaSAug [57] 2021 ✓ sample

PaCo [62] 2021 ✓ feature

DRO-LT [64] 2021 ✓ feature

Unsupervised discovery [97] 2021 ✓ feature

Hybrid [63] 2021 ✓ feature

KCL [61] 2021 ✓ ✓ feature

DT2 [98] 2021 ✓ feature, classifier

LTML [99] 2021 ✓ sample, model

ACE [100] 2021 ✓ sample, model

ResLT [101] 2021 ✓ sample, model

SADE [102] 2021 ✓ objective, model
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CHAPTER 3. THEORETICAL FRAMEWORK

3.1 Deep Neural Network

Linearity entails the weaker presumption of monotonicity, meaning that any

increase in a feature must either consistently lead to an increase in the model’s

output (if the corresponding weight is positive) or consistently result in a decrease

in the model’s output (if the corresponding weight is negative). This assumption

is sometimes reasonable. For instance, when predicting whether an individual

will repay a loan, it is plausible to assume that, all other factors being equal, an

applicant with a higher income would always be more likely to repay than one with

a lower income. While this relationship is monotonic, it is unlikely to be linearly

related to the probability of repayment. An increase in income from 0 to 50,000

probably results in a more significant increase in the likelihood of repayment than

an increase from 1 to 1.05 million. One way to address this issue is to postprocess

the outcome to make linearity more plausible, such as by using the logistic map

(and thus the logarithm of the probability of outcome).

The limitations of linear models can be overcome by incorporating one or

more hidden layers. The simplest method to achieve this is by stacking multiple

fully connected layers sequentially. Each layer passes its output to the next layer

until the final outputs are generated. The first L− 1 layers can be considered the

representation, while the final layer acts as the linear predictor. This structure is

commonly known as a multilayer perceptron, often abbreviated as MLP.

Figure 3.1 An MLP with a hidden layer of five hidden units [4].

Figure 3.1 illustrates an MLP with four inputs and three outputs, featuring

a hidden layer composed of five hidden units. As the input layer does not perform

any computations, generating outputs with this network necessitates executing the

calculations for both the hidden and output layers. Consequently, this MLP is

considered to have two layers. It is important to note that both layers are fully

7



connected. Each input affects every neuron in the hidden layer, and each of these

neurons subsequently affects every neuron in the output layer.

3.1.1 Architecture Design

The matrixX ∈ Rn×d represents a minibatch of n examples, with each example

containing d inputs (features). For an MLP with one hidden layer comprising h

hidden units, the outputs of the hidden layer, referred to as hidden representations,

are represented by H ∈ Rn×h. Given that both the hidden and output layers are

fully connected, the hidden-layer weights are denoted by W(1) ∈ Rd×h with biases

b(1) ∈ R1×h, and the output-layer weights by W(2) ∈ Rh×q with biases b(2) ∈ R1×q.

This configuration allows for the calculation of the outputs O ∈ Rn×q of the one-

hidden-layer MLP as follows:

H = XW(1) + b(1),

O = HW(2) + b(2).
(3.1)

Note that with the introduction of the hidden layer, the model must track

and update additional sets of parameters. What is the benefit of this addition?

The hidden units described above are defined by an affine transformation of the

inputs, and the outputs (pre-softmax) are simply an affine transformation of the

hidden units. An affine transformation of an affine transformation remains an

affine transformation. Furthermore, a linear model was already able to represent

any affine function.

To see this more formally, the hidden layer can be eliminated in the definition

above, resulting in an equivalent single-layer model with parametersW = W(1)W(2)

and b = b(1)W(2) + b(2):

O = (XW(1) + b(1))W(2) + b(2) = XW(1)W(2) + b(1)W(2) + b(2) = XW + b. (3.2)

To fully harness the power of multilayer architectures, an essential component

is required: a nonlinear activation function σ, which is applied to each hidden unit

following the affine transformation. A common example is the ReLU (rectified

linear unit) activation function σ(x) = max(0, x), which operates elementwise on its

arguments. The outputs produced by the activation function σ(·) are referred to as

activations. In general, once activation functions are incorporated, it is no longer

feasible to reduce the MLP to a linear model:
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H = σ(XW(1) + b(1)), (3.3)

O = HW(2) + b(2). (3.4)

Since each row in X represents an example in the minibatch, we define the

nonlinearity σ to operate on its inputs in a row-wise manner, meaning it processes

one example at a time. This notation is similarly used for softmax when denoting:

3.1.2 Optimization Algorithm

1) Forward Propagation

The procedure of forward propagation (or forward pass) involves the sequential

computation and storage of intermediate variables and outputs within a neural

network, advancing from the input layer to the output layer. This section provides

a detailed explanation of the steps involved in a neural network with one hidden

layer, describing each step precisely. While this might appear thorough, as the

funk legend James Brown famously said, one must "pay the cost to be the boss."

For the sake of clarity and brevity, let us assume that the input example is

denoted as x ∈ Rd, and that the hidden layer lacks a bias term. Therefore, the

intermediate variable is defined as:

z = W(1)x, (3.5)

where W(1) ∈ Rh×d represents the weight parameter for the hidden layer.

After applying the activation function ϕ, the resulting hidden activation vector,

which has a length of h, is expressed as:

h = ϕ(z). (3.6)

The output from the hidden layer, denoted as h, acts as an intermediate

variable. If we consider that the parameters of the output layer consist only of the

weight matrix W(2) ∈ Rq×h, the output layer variable is calculated as a vector of

length q:

o = W(2)h. (3.7)
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Following this, given a loss function represented by l and a label for a single

example denoted as y, the loss term for that individual data example is calculated

as:

L = l(o, y). (3.8)

Moreover, integrating the ℓ2 regularization, which will be explained in detail

later and represented by the hyperparameter λ, the regularization term can be

formulated as:

s =
λ

2

(
∥W(1)∥2F + ∥W(2)∥2F

)
, (3.9)

Here, the Frobenius norm of the matrix is essentially the ℓ2 norm applied after

the matrix has been flattened into a vector. Consequently, the regularized loss of

the model for a given data example is established as:

J = L+ s. (3.10)

Throughout the subsequent discourse, J is referred to as the objective function.

2) Backpropagation

Backpropagation involves computing the gradients of neural network parame-

ters. In essence, it entails traversing the network in reverse order, from the output

to the input layer, applying the chain rule from calculus. The algorithm stores

any intermediate variables (partial derivatives) needed during the gradient com-

putation for specific parameters. Let’s consider functions Y = f(X) and Z = g(Y ),

where the input and output, X, Y , Z, are tensors of arbitrary shapes. Applying

the chain rule, the derivative of Z concerning X can be calculated as:

∂Z

∂X
= prod

(
∂Z

∂Y
,
∂Y

∂X

)
. (3.11)

In this context, the prod operator performs multiplication on its arguments fol-

lowing necessary operations like transposition and swapping input positions. This

operation is straightforward for vectors, where it simplifies to matrix-matrix multi-

plication. For tensors of higher dimensions, the appropriate operation is employed.

Utilizing the prod operator streamlines the notation, removing unnecessary com-

plexity.
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The parameters of the simple network with a single hidden layer are denoted

by W(1) and W(2). The gradients ∂J/∂W(1) and ∂J/∂W(2) are computed through

backpropagation. This involves applying the chain rule and calculating the gra-

dient of each intermediate variable and parameter in sequence. Unlike forward

propagation, where calculations proceed from input to output, in backpropaga-

tion, the order is reversed to start with the outcome of the computational graph

and work backward towards the parameters. Initially, the gradients of the objec-

tive function J = L+ s with respect to the loss term L and the regularization term

s are computed:

∂J

∂L
= 1 and

∂J

∂s
= 1. (3.12)

Moving forward, we determine the gradient of the objective function with respect

to the output layer variable o using the chain rule:

∂J

∂o
= prod

(
∂J

∂L
,
∂L

∂o

)
=

∂L

∂o
∈ Rq. (3.13)

Next, the gradient of the objective function concerning the variable of the output

layer o is computed according to the chain rule:

∂J

∂o
= prod

(
∂J

∂L
,
∂L

∂o

)
=

∂L

∂o
∈ Rq. (3.14)

Next, the gradients of the regularization term concerning both parameters are

calculated:

∂s

∂W(1)
= λW(1) and

∂s

∂W(2)
= λW(2). (3.15)

Now the gradient ∂J/∂W(2) ∈ Rq×h of the model parameters closest to the output

layer is calculated. Using the chain rule yields:

∂J

∂W(2)
= prod

(
∂J

∂o
,

∂o

∂W(2)

)
+ prod

(
∂J

∂s
,

∂s

∂W(2)

)
=

∂J

∂o
h⊤ + λW(2). (3.16)

To obtain the gradient concerning W(1), the backpropagation continues along the

output layer to the hidden layer. The gradient with respect to the hidden layer

output ∂J/∂h ∈ Rh is given by

∂J

∂h
= prod

(
∂J

∂o
,
∂o

∂h

)
= W(2)⊤∂J

∂o
. (3.17)

Since the activation function, ϕ, applies elementwise, calculating the gradient

∂J/∂z ∈ Rh of the intermediate variable z requires that the elementwise multi-

plication operator, denoted by ⊙, is used:

∂J

∂z
= prod

(
∂J

∂h
,
∂h

∂z

)
=

∂J

∂h
⊙ ϕ′(z). (3.18)
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Finally, the gradient ∂J/∂W(1) ∈ Rh×d of the model parameters closest to the input

layer is obtained. According to the chain rule, we have

∂J

∂W(1)
= prod

(
∂J

∂z
,

∂z

∂W(1)

)
+ prod

(
∂J

∂s
,

∂s

∂W(1)

)
=

∂J

∂z
x⊤ + λW(1). (3.19)

3) Training Procedure

As described in Algorithm 1, the training process involves multiple epochs of

minibatch stochastic gradient descent. This algorithm is widely used for training

deep learning models due to its efficiency in handling large datasets and its ability

to converge to a good solution over time.

The algorithm begins by taking as input the dataset D, which contains the

training examples, the number of epochs E, which determines how many times the

algorithm will iterate over the entire dataset, the minibatch size B, which specifies

the number of examples in each minibatch, and the learning rate α, which controls

the step size of the parameter updates.

During each epoch, the dataset is shuffled to ensure that the model sees the

examples in a different order in each iteration. This helps prevent the model from

overfitting to the order of the examples in the dataset.

For each minibatch in the shuffled dataset, the algorithm performs the fol-

lowing steps:

1. Forward Propagation: The input minibatch X is passed through the

neural network to compute the predicted output O. This involves computing the

activations of the hidden layer H using the Rectified Linear Unit (ReLU) activa-

tion function, and then computing the output layer activations using the softmax

function.

2. Backward Propagation: The gradients of the loss function concerning

the output layer activations and hidden layer activations are computed. These

gradients are then used to update the model parameters using gradient descent.

3. Parameter Updates: The weights and biases of both the output and

hidden layers are updated using the computed gradients and the learning rate α.

This process is repeated for each minibatch in the dataset for the specified

number of epochs E. By iteratively updating the model parameters based on

small batches of data, the algorithm gradually converges toward a solution that

minimizes the chosen loss function.

The use of minibatch stochastic gradient descent allows the algorithm to effi-

ciently handle large datasets that may not fit into memory all at once. Additionally,
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by updating the parameters based on only a subset of the data at a time, the al-

gorithm is less likely to get stuck in local minima and is more likely to find a good

solution that generalizes well to unseen data.

Algorithm 1 Training Algorithm for Deep Learning Model

1: Input:

2: Minibatch of examples X ∈ Rn×d with n examples and d features.

3: Hidden layer weights W(1) ∈ Rd×h and biases b(1) ∈ R1×h.

4: Output layer weights W(2) ∈ Rh×q and biases b(2) ∈ R1×q.

5: Number of epochs E.

6: Learning rate α.

7: Output: Updated weights and biases for both layers.

8: for epoch = 1 to E do

9: Forward Propagation:

10: Compute hidden layer activations:

11: H← ReLU(XW(1) + b(1))

12: Compute output layer activations:

13: O← softmax(HW(2) + b(2))

14:

15: Backward Propagation:

16: Compute gradients of the loss function for output layer activations:

17: ∂J
∂O ← O−Y

18: Compute gradients of the loss function with respect to hidden layer activa-

tions:

19: ∂J
∂H ←

∂J
∂OW(2)⊤

20: Update output layer weights and biases:

21: W(2) ←W(2) − α ∂J
∂W(2)

22: b(2) ← b(2) − α ∂J
∂b(2)

23: Update hidden layer weights and biases:

24: W(1) ←W(1) − α ∂J
∂W(1)

25: b(1) ← b(1) − α ∂J
∂b(1)

26: end for

3.2 Deep Convolutional Neural Network

3.2.1 Constraining the MLP

To commence, contemplate an MLP operating on two-dimensional images

denoted by X as its input and their immediate hidden representations, H, repre-

sented analogously as matrices (manifesting as two-dimensional tensors in code),
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where both X and H exhibit identical shapes. Let this concept sink in. Now en-

visage that not only the inputs but also the hidden representations possess spatial

arrangement.

Let [X]i,j and [H]i,j signify the pixel situated at coordinates (i, j) within the

input image and the hidden representation, correspondingly. Consequently, to

ensure each hidden unit captures input from every input pixel, transition from

utilizing weight matrices (as conventionally practiced in MLPs) to representing

parameters as fourth-order weight tensors denoted by W. Assuming U encompasses

biases, the fully connected layer can be formally delineated as:

[H]i,j = [U]i,j +
∑
k

∑
l

[W]i,j,k,l[X]k,l (3.20)

= [U]i,j +
∑
a

∑
b

[V]i,j,a,b[X]i+a,j+b. (3.21)

The transition from W to V is merely superficial at this point, as there exists

a direct mapping between coefficients in both fourth-order tensors. Simply rear-

range the subscripts (k, l) so that k = i + a and l = j + b. In simpler terms, define

[V]i,j,a,b = [W]i,j,i+a,j+b. The indices a and b traverse both positive and negative

offsets, encompassing the entire image. For any given position (i, j) within the hid-

den representation [H]i,j, calculate its value by summing over pixels in X, centered

around (i, j), and weighted by [V]i,j,a,b.

Now contemplate the total parameter count necessary for a single layer with

this parametrization: a 1000 × 1000 image (1 megapixel) is mapped to a 1000 ×
1000 hidden representation. This entails 1012 parameters, significantly surpassing

current computational capabilities.

3.2.2 Translation Invariance

The primary principle to consider is that of translational invariance. This

principle suggests that a shift in the input X should correspondingly shift the

hidden representation H. This outcome is only attainable if V and U do not depend

on (i, j). Consequently, it implies that [V]i,j,a,b = [V]a,b and U remains constant,

represented as u. Thus, the definition for H can be simplified as follows:

[H]i,j = u+
∑
a

∑
b

[V]a,b[X]i+a,j+b. (3.22)

This process is termed a convolution. The pixels surrounding the position

(i, j) at (i + a, j + b) are multiplied by coefficients [V]a,b to calculate the value
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[H]i,j. It’s noteworthy that [V]a,b necessitates notably fewer coefficients compared

to [V]i,j,a,b, as it’s no longer contingent on the specific image location. Consequently,

the parameter count reduces from 1012 to a more manageable 4× 106, retaining the

dependence on a, b ∈ (−1000, 1000).

3.2.3 Locality

The second principle we consider is that of locality. As discussed earlier, the

premise is that it shouldn’t be necessary to search far from position (i, j) to gather

pertinent information for assessing what’s happening at [H]i,j. This suggests that

beyond a certain range |a| > ∆ or |b| > ∆, the value of [V]a,b ought to be set to

zero. In other words, [H]i,j can be reformulated as:

[H]i,j = u+

∆∑
a=−∆

∆∑
b=−∆

[V]a,b[X]i+a,j+b. (3.23)

This adjustment decreases the parameter count from 4 × 106 to 4∆2, where

∆ typically remains below 10. Consequently, another four orders of magnitude

are shaved off the parameter count. It’s worth noting that Equation 3.2.3 depicts

what’s termed a convolutional layer. Convolutional neural networks (CNNs) belong

to a specific category of neural networks incorporating convolutional layers. In the

deep learning research realm, V is often referred to as a convolution kernel, a filter,

or simply the layer’s learnable parameters.

Previously, representing a single layer in an image-processing network might

have demanded billions of parameters. Now, typically, only a few hundred param-

eters suffice, without altering the dimensions of either the inputs or the hidden

representations. However, this drastic parameter reduction comes with a trade-off:

the features become translation invariant, and the layer can only consider local

information when determining each hidden activation’s value. All learning relies

on imposing inductive bias. When this bias aligns with reality, it yields sample-

efficient models that generalize effectively to unseen data. Conversely, if these

biases don’t correspond with reality, such as if images aren’t actually translation

invariant, the models may struggle to even fit the training data.

This significant parameter reduction leads to the final goal: deeper layers

should capture larger and more intricate aspects of an image. This can be accom-

plished by interleaving nonlinearities and convolutional layers repeatedly.
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3.2.4 Convolutions

Equation 3.2.3 is referred to as a convolution. In mathematics, the convolution

between two functions, say f, g : Rd → R, is defined as

(f ∗ g)(x) =
∫

f(z)g(x− z) dz. (3.24)

This formulation quantifies the intersection between f and g as one function

is "mirrored" and displaced by x. In the case of discrete entities, the integral

transforms into a summation. For instance, for vectors drawn from the collection

of square-summable infinite-dimensional vectors with the index spanning across Z,
the specification is as follows:

(f ∗ g)(i) =
∑
a

f(a)g(i− a). (3.25)

For two-dimensional tensors, a corresponding sum involves indices (a, b) for f

and (i− a, j − b) for g, respectively:

(f ∗ g)(i, j) =
∑
a

∑
b

f(a, b)g(i− a, j − b). (3.26)

This equation bears a resemblance to Equation 3.23, albeit with a significant

deviation. Instead of employing (i+a, j+b), it opts for the difference. Nevertheless,

this discrepancy is mainly superficial, as the notation between Equation 3.23 and

Equation 3.26 can always be aligned. The initial definition in Equation 3.23 more

precisely characterizes a cross-correlation.

3.2.5 Channels

The current approach encounters a significant issue. Up to this point, the con-

versation has conveniently overlooked the fact that images consist of three channels:

red, green, and blue. In essence, images aren’t two-dimensional entities but rather

third-order tensors, delineated by height, width, and channel, for instance, with

dimensions of 1024×1024×3 pixels. While the initial two dimensions pertain to spa-

tial relationships, the third dimension assigns a multidimensional representation to

each pixel location. Thus, X is indexed as [X]i,j,k. Consequently, the convolutional

filter must adapt accordingly. Instead of [V]a,b, it now becomes [V]a,b,c.
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Furthermore, just as the input constitutes a third-order tensor, it’s advan-

tageous to similarly frame the hidden representations as third-order tensors H.

In essence, rather than having a singular hidden representation corresponding to

each spatial location, an entire array of hidden representations corresponding to

each spatial location is desired. These hidden representations can be envisioned

as comprising numerous two-dimensional grids stacked atop each other. They’re

occasionally referred to as channels or feature maps, as each furnishes a spatialized

set of learned features for the subsequent layer. Conceptually, at lower layers prox-

imate to inputs, some channels might specialize in edge recognition, while others

might identify textures.

To accommodate multiple channels in both inputs (X) and hidden representa-

tions (H), a fourth coordinate is introduced to V: [V]a,b,c,d. Consolidating all these

considerations yields the ensuing expression:

[H]i,j,d =

∆∑
a=−∆

∆∑
b=−∆

∑
c

[V]a,b,c,d[X]i+a,j+b,c, (3.27)

The parameter d denotes the output channels in the hidden representations

H. The subsequent convolutional layer will accept a third-order tensor, H, as input.

Due to its versatility, Equation 3.2.5 is adopted as the definition of a convolutional

layer for multiple channels, where V serves as a kernel or filter of the layer.

Numerous operations remain to be addressed. For instance, it’s crucial to

determine the method of aggregating all the hidden representations into a singu-

lar output, such as identifying whether there’s a Waldo anywhere in the image.

Additionally, decisions must be made regarding efficient computation, combining

multiple layers, selecting appropriate activation functions, and making judicious

design choices to produce networks that perform effectively in practical scenarios.

3.3 Attention Mechanism

During the initial surge of deep learning advancements, the focal points re-

volved around architectures like the multilayer perceptron, convolutional networks,

and recurrent networks. Surprisingly, despite nearly three decades passing, the

foundational model architectures driving many breakthroughs in deep learning dur-

ing the 2010s remained remarkably unchanged. While numerous methodological

innovations entered the mainstream, such as ReLU activations, residual layers,

batch normalization, dropout, and adaptive learning rate schedules, the funda-

mental architectures were essentially scaled-up versions of traditional concepts.
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Despite numerous alternative proposals, models resembling classical convolutional

neural networks continued to maintain their *state-of-the-art* status in computer

vision, while models akin to Sepp Hochreiter’s original LSTM recurrent neural

network design dominated various natural language processing applications. Per-

haps up to that juncture, the rapid advancement of deep learning seemed primar-

ily propelled by advancements in available computational resources (courtesy of

GPU-driven parallel computing innovations) and the abundance of massive data

resources (owing to inexpensive storage and Internet services). While these factors

likely remained the primary drivers behind the technology’s increasing prowess, we

are now witnessing a significant shift in the dominant architectural landscape.

The central innovation behind the Transformer model is the *attention mecha-

nism*, initially conceived as an augmentation for encoder-decoder RNNs employed

in sequence-to-sequence tasks like machine translation [103]. Early sequence-to-

sequence models for machine translation [104] compressed the entire input by the

encoder into a single fixed-length vector for the decoder’s consumption. The no-

tion behind attention was to allow the decoder to revisit the input sequence at

each step, dynamically focusing on particular parts of the input sequence during

decoding. Bahdanau’s attention mechanism provided a straightforward way for the

decoder to dynamically *attend* to different input segments during each decod-

ing step. Essentially, the encoder could represent the full original input sequence

length, and during decoding, the decoder could receive, as input (via a control

mechanism), a context vector comprising a weighted sum of the input representa-

tions at each time step. These weights determine the degree to which each context

emphasizes each input token, with the crucial aspect being the differentiability of

the weight assignment process, enabling it to be learned alongside other neural

network parameters.

Initially, attention mechanisms proved highly successful enhancements to re-

current neural networks dominating machine translation tasks. These models out-

performed original encoder-decoder sequence-to-sequence architectures. Addition-

ally, researchers noted interesting qualitative insights emerging from attention-

weight patterns. In translation tasks, attention models often assign high weights

to cross-lingual synonyms when generating corresponding words in the target lan-

guage. For instance, when translating "my feet hurt" to "j’ai mal au pieds", the

network might assign high attention weights to the "feet" representation when gen-

erating the French word "pieds". While these insights led to claims about attention

models providing "interpretability", the precise meaning of attention weights i.e.,

how if at all, they should be *interpreted* remains a somewhat nebulous research

area.
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However, attention mechanisms soon emerged as significant concerns beyond

their utility as encoder-decoder recurrent neural network enhancements and their

purported utility in highlighting salient inputs. [105] introduced the Transformer

architecture for machine translation, abandoning recurrent connections entirely

and relying instead on well-structured attention mechanisms to capture all input-

output token relationships. The architecture performed exceptionally well, with

the Transformer becoming prevalent in most state-of-the-art natural language pro-

cessing systems by 2018. Concurrently, the prevailing practice in natural language

processing shifted towards pre-training large-scale models on vast generic back-

ground corpora, optimizing them using self-supervised pretraining objectives, and

subsequently fine-tuning them with available downstream data. The gap between

Transformers and traditional architectures widened significantly when applied in

this pretraining paradigm, aligning with the ascendancy of Transformers and the

advent of such large-scale pre-trained models, sometimes dubbed foundation mod-

els [106].

3.3.1 Queries, Keys, and Values

All the networks discussed so far fundamentally rely on the input having a

specified size. For instance, the images in ImageNet have dimensions of 224 × 224

pixels, and CNNs are optimized for this dimension. Similarly, in natural language

processing, the input size for RNNs is defined and fixed. Handling variable size is

managed by sequentially processing one token at a time or by utilizing specially

designed convolution kernels [107]. However, this strategy can cause significant

issues when the input varies in size and information content during text transfor-

mation [104]. Specifically, for lengthy sequences, it becomes challenging to keep

track of all the information the network has processed or generated. Even explicit

tracking heuristics proposed by [108] provide limited advantage.

To further illustrate this concept, consider databases. At their most ba-

sic, they are collections of keys (k) and values (v). For example, a database D
might contain tuples {("Zhang", "Aston"), ("Lipton", "Zachary"), ("Li", "Mu"),

("Smola", "Alex"), ("Hu", "Rachel"), ("Werness", "Brent")}, where the last name

is the key and the first name is the value. Various operations can be executed on D,
such as an exact query (q) for "Li," which would return the value "Mu." If ("Li",

"Mu") is not a record in D, no valid answer exists. If approximate matches are

allowed, ("Lipton", "Zachary") might be retrieved instead. This simple example

illustrates several valuable concepts:

• Queries (q) can be formulated to work on (k, v) pairs such that they remain
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valid regardless of the database size.

• The same query can produce different responses depending on the database

contents.

• The code for handling a large state space (the database) can be quite simple

(e.g., exact match, approximate match, top-k).

• There is no need to reduce or simplify the database to make the operations

effective.

This discussion leads to one of the most intriguing concepts introduced in

deep learning in the past decade: the attention mechanism [103]. Define D def
=

{(k1,v1), . . . (km,vm)} as a database of m tuples of keys and values. Let q be a

query. Then we can define the attention over D as

Attention(q,D) def
=

m∑
i=1

α(q,ki)vi, (3.28)

where α(q,ki) ∈ R (i = 1, . . . ,m) are scalar attention weights. The operation

itself is typically referred to as attention pooling. The name attention derives from

the fact that the operation pays particular attention to the terms for which the

weight α is significant (i.e., large). As such, the attention over D generates a linear

combination of values contained in the database. Several special cases exist:

where α(q,ki) ∈ R (i = 1, . . . ,m) are scalar attention weights. The operation

itself is typically referred to as attention pooling. The term attention comes from the

fact that the operation emphasizes the terms for which the weight α is significant

(i.e., large). Thus, the attention over D produces a linear combination of values in

the database. Several special cases exist:

• The weights α(q,ki) are nonnegative. In this case, the output of the attention

mechanism lies within the convex cone spanned by the values vi.

• The weights α(q,ki) form a convex combination, i.e.,
∑

i α(q,ki) = 1 and

α(q,ki) ≥ 0 for all i. This is the most common setting in deep learning.

• Exactly one of the weights α(q,ki) is 1, while all others are 0. This is similar

to a traditional database query.

• All weights are equal, i.e., α(q,ki) =
1
m for all i. This is equivalent to averaging

across the entire database, also called average pooling in deep learning.
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A common strategy for ensuring that the weights sum up to 1 is to normalize

them via

α(q,ki) =
α(q,ki)∑
jα(q,kj)

. (3.29)

Specifically, to guarantee that the weights are nonnegative, exponentiation

can be employed. This allows for the selection of any function a(q,k), followed by

the application of the softmax operation used in multinomial models as follows:

α(q,ki) =
exp(a(q,ki))∑
j exp(a(q,kj))

. (3.30)

This operation is readily implemented in all deep learning frameworks. It

is differentiable and its gradient never vanishes, which are beneficial properties

for a model. However, the attention mechanism described above is not the sole

option. For example, a non-differentiable attention model can be developed and

trained using reinforcement learning techniques. Training such a model is chal-

lenging, though. Therefore, most contemporary attention research adheres to the

framework depicted in Figure 3.2. The discussion centers on this category of dif-

ferentiable mechanisms.

Figure 3.2 The attention mechanism computes a linear combination over values

vi via attention pooling, where weights are derived according to the compatibility

between a query q and keys ki [4].

3.3.2 Attention Pooling by Similarity

With the primary elements of the attention mechanism now introduced, let’s

apply them in a traditional context, specifically regression and classification through
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kernel density estimation ([109, 110]). This diversion offers extra background in-

formation and can be bypassed if desired. At their essence, Nadaraya–Watson

estimators utilize a similarity kernel α(q,k) that connects queries q to keys k.

Some typical kernels include

α(q,k) = exp
(
−1

2
∥q− k∥2

)
Gaussian; (3.31)

α(q,k) = 1 if ∥q− k∥ ≤ 1 Boxcar; (3.32)

α(q,k) = max (0, 1− ∥q− k∥) Epanechikov. (3.33)

There are numerous other options available. All kernels are heuristic in nature

and can be adjusted. For example, the width can be fine-tuned, not only globally

but also on a per-coordinate basis. Nonetheless, they all result in the following

equation for both regression and classification:

f(q) =
∑
i

vi
α(q,ki)∑
j α(q,kj)

. (3.34)

For (scalar) regression with observations (xi, yi) representing features and la-

bels, vi = yi are scalars, ki = xi are vectors, and the query q indicates the new

location for evaluating f . For (multiclass) classification, one-hot encoding of yi is

used to obtain vi. A notable feature of this estimator is that it requires no train-

ing. Moreover, if the kernel is sufficiently narrowed as the data volume increases,

the method is consistent ([111]), meaning it converges to an optimal statistical

solution. Let’s begin by examining some kernels.

3.3.3 Attention Scoring Function

Let’s review the attention function (without exponentiation) from the Gaus-

sian kernel for a moment:

a(q,ki) = −
1

2
∥q− ki∥2 = q⊤ki −

1

2
∥ki∥2 −

1

2
∥q∥2.

First, note that the final term depends on q only. As such it is identical

for all (q,ki) pairs. Normalizing the attention weights to 1, as is done in (3.30),

ensures that this term disappears entirely. Second, note that both batch and layer

normalization (to be discussed later) lead to activations that have well-bounded,

and often constant, norms ∥ki∥. This is the case, for instance, whenever the keys

ki were generated by a layer norm. As such, we can drop it from the definition of

a without any major change in the outcome.
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Last, we need to keep the order of magnitude of the arguments in the expo-

nential function under control. Assume that all the elements of the query q ∈ Rd

and the key ki ∈ Rd are independent and identically drawn random variables with

zero mean and unit variance. The dot product between both vectors has zero mean

and a variance of d. To ensure that the variance of the dot product still remains

1 regardless of vector length, we use the *scaled dot product attention* scoring

function. That is, we rescale the dot product by 1/
√
d. We thus arrive at the first

commonly used attention function that is used, e.g., in Transformers [105]:

a(q,ki) = q⊤ki/
√
d. (3.35)

Note that attention weights α still need normalizing. We can simplify this

further via (3.30) by using the softmax operation:

α(q,ki) = softmax(a(q,ki)) =
exp(q⊤ki/

√
d)∑

j=1 exp(q
⊤kj/

√
d)
. (3.36)

As it turns out, all popular attention mechanisms use the softmax, hence we

will limit ourselves to that in the remainder of this chapter.

3.3.4 The Bahdanau Attention Mechanism

When addressing machine translation, an encoder-decoder architecture was

developed for sequence-to-sequence learning using two RNNs [104]. Specifically, the

RNN encoder converts a variable-length sequence into a fixed-size context variable.

Subsequently, the RNN decoder produces the output (target) sequence token by

token, relying on the generated tokens and the context variable.

Refer to 3.3 with additional details. Traditionally, in an RNN, all perti-

nent information about a source sequence is encapsulated into an internal *fixed-

dimensional* state representation by the encoder. This state is then utilized by the

decoder as the sole source of information for generating the translated sequence.

In essence, the sequence-to-sequence model considers the intermediate state as a

sufficient statistic of the input string.

While this approach is reasonable for shorter sequences, it becomes impracti-

cal for longer ones, such as entire book chapters or even lengthy sentences. Even-

tually, the intermediate representation will lack the capacity to retain all crucial

information from the source sequence. Consequently, the decoder will struggle to

translate lengthy and intricate sentences. One of the earliest encounters with this
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Figure 3.3 Sequence-to-sequence model. The state, as generated by the encoder,

is the only piece of information shared between the encoder and the decoder [4].

challenge was documented by [112], who attempted to devise an RNN for generat-

ing handwritten text. Given the arbitrary length of the source text, they devised a

differentiable attention mechanism to align text characters with the much lengthier

pen trace, enabling alignment in only one direction. This concept draws inspira-

tion from decoding techniques in speech recognition, such as hidden Markov models

[113].

Building upon the notion of learning to align, [103] introduced a differen-

tiable attention mechanism *without* the constraint of unidirectional alignment.

When predicting a token, if not all input tokens are pertinent, the model selec-

tively aligns (or attends) to segments of the input sequence deemed relevant to the

current prediction. This alignment is then leveraged to update the current state

before generating the next token. Despite its seemingly innocuous description, the

*Bahdanau attention mechanism* has arguably emerged as one of the most influ-

ential concepts in deep learning over the past decade, spawning architectures like

Transformers [105] and numerous related innovations.

3.3.5 Multi-head Attention

In practical applications, when faced with the same set of queries, keys, and

values, it might be advantageous for the model to integrate insights from diverse

behaviors of the identical attention mechanism. This could involve capturing de-

pendencies across various ranges (e.g., shorter-range versus longer-range) within a

sequence. Hence, enabling the attention mechanism to concurrently utilize distinct

representation subspaces of queries, keys, and values could prove beneficial.

To achieve this, instead of conducting a singular attention pooling, queries,

keys, and values undergo individual linear projections, each learned independently.
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These h projected queries, keys, and values are then concurrently inputted into

attention pooling. Eventually, the outputs of the h attention poolings are concate-

nated and further processed through another learned linear projection to generate

the ultimate output. This architecture is referred to as multi-head attention, where

each of the h attention pooling outcomes constitutes a head [105]. Employing

fully connected layers to implement learnable linear transformations, Figure 3.4

illustrates multi-head attention.

Figure 3.4 Multi-head attention, where multiple heads are concatenated and then

linearly transformed [4].

Before detailing the implementation of multi-head attention, it is crucial to

establish the mathematical formalism of this model. For a given query q ∈ Rdq ,

key k ∈ Rdk , and value v ∈ Rdv , each attention head hi (i = 1, . . . , h) is computed

as

hi = f(W
(q)
i q,W

(k)
i k,W

(v)
i v) ∈ Rpv , (3.37)

where W
(q)
i ∈ Rpq×dq , W(k)

i ∈ Rpk×dk , and W
(v)
i ∈ Rpv×dv represent learnable

parameters, and f denotes the attention pooling mechanism, such as additive at-

tention or scaled dot product attention. The output of multi-head attention is ob-

tained by another linear transformation using learnable parameters Wo ∈ Rpo×hpv

applied to the concatenation of h heads:
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Wo

h1
...

hh

 ∈ Rpo . (3.38)

Based on this design, each head may attend to different parts of the input,

allowing more sophisticated functions than the simple weighted average to be ex-

pressed.

3.3.6 Self-Attention and Positional Encoding

In the realm of deep learning, sequences are often encoded using CNNs or

RNNs. With attention mechanisms in mind, consider inputting a sequence of

tokens into an attention mechanism, where each token has its own set of queries,

keys, and values at every step. When determining the representation of a token

at the next layer, it can attend (via its query vector) to any other token, based

on their key vectors. By computing the compatibility scores between all query-key

pairs, a representation can be calculated for each token by forming a weighted sum

over the other tokens.

Since every token attends to every other token (in contrast to decoder steps

attending to encoder steps), such architectures are commonly referred to as self-

attention models [114, 105], and alternatively known as intra-attention models [115,

116, 117]. This section explores sequence encoding using self-attention, including

considerations for the sequence order.

Given a sequence of input tokens x1, . . . ,xn, where each xi ∈ Rd (1 ≤ i ≤ n),

self-attention produces an output sequence of the same length y1, . . . ,yn, where

yi = f(xi, (x1,x1), . . . , (xn,xn)) ∈ Rd (3.39)

Following the definition of attention pooling, the code snippet below demon-

strates the computation of self-attention using multi-head attention for a tensor

with dimensions (batch size, number of time steps or sequence length in tokens,

d). The resulting tensor maintains the same shape.

It proves beneficial to compare architectures for transforming a sequence of n

tokens into another sequence of equal length, where each input or output token is

represented by a d-dimensional vector. Specifically, we examine the architectures

of CNNs, RNNs, and self-attention, considering their computational complexity,

sequential operations, and maximum path lengths. Sequential operations hinder
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parallel computation, while shorter paths between any combination of sequence

positions facilitate the learning of long-range dependencies within the sequence.

Figure 3.5 Comparing CNN (padding tokens are omitted), RNN, and self-attention

architectures [4].

Any textual sequence can be treated as a "one-dimensional image," akin to

how one-dimensional CNNs handle local features like n-grams in text. For a se-

quence of length n, suppose a convolutional layer with a kernel size of k and both

input and output channels set to d. The computational complexity of this layer is

O(knd2). Illustrated in Figure 3.5, CNNs exhibit a hierarchical structure, resulting

in O(1) sequential operations and a maximum path length of O(n/k). For instance,
in Figure 3.5, tokens x1 and x5 fall within the receptive field of a two-layer CNN

with a kernel size of 3.

When updating RNN hidden states, the multiplication of the d×d weight ma-

trix and the d-dimensional hidden state has a computational complexity of O(d2).
With a sequence length of n, the computational complexity of the recurrent layer

becomes O(nd2). As depicted in Figure 3.5, there are O(n) sequential operations,
which cannot be parallelized, and the maximum path length remains O(n).

In self-attention, the queries, keys, and values are all n × d matrices. Con-

sidering scaled dot product attention, where an n × d matrix is multiplied by a

d × n matrix, followed by the multiplication of the resulting n × n matrix by an
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n × d matrix, the self-attention exhibits a computational complexity of O(n2d).
As demonstrated in Figure 3.5, each token directly connects to every other token

through self-attention. Thus, computations can be parallelized with O(1) sequen-
tial operations, and the maximum path length is also O(1).

In summary, both CNNs and self-attention allow for parallel computation,

with self-attention boasting the shortest maximum path length. However, the

quadratic computational complexity concerning the sequence length renders self-

attention impractical for extremely long sequences.

3.4 Segmentation Model Architecture

In the field of computer vision, segmentation models play a crucial role by

providing pixel-level understanding of images, which is essential for numerous appli-

cations including medical imaging, autonomous driving, and scene understanding.

These models aim to partition an image into segments, or regions, that correspond

to different objects or parts of objects, thereby enabling a detailed analysis of

the visual content. Traditional segmentation approaches relied heavily on hand-

crafted features and algorithms like thresholding, region growing, and edge detec-

tion, which, while effective to some extent, often struggled with complex scenes

and varied object appearances.

The advent of deep learning, particularly convolutional neural networks (CNNs),

has revolutionized image segmentation by allowing models to learn hierarchical fea-

tures directly from data, significantly improving accuracy and robustness. Among

the most influential architectures is the Fully Convolutional Network (FCN), which

replaces fully connected layers with convolutional ones, enabling dense predictions

at the pixel level. This architecture has inspired numerous variants and improve-

ments, such as U-Net, originally designed for biomedical image segmentation, which

introduces a symmetric U-shaped structure with skip connections that help recover

fine details by combining low-level and high-level features.

Another notable advancement is the development of the Mask R-CNN, which

extends Faster R-CNN by adding a branch for predicting segmentation masks, thus

integrating object detection and instance segmentation into a unified framework.

More recent approaches leverage transformer-based models, like the Vision Trans-

former (ViT) and its derivatives, which capture long-range dependencies through

self-attention mechanisms, thereby enhancing the segmentation performance for

complex scenes. Additionally, models such as DeepLab employ atrous convolu-

tions (also known as dilated convolutions) to capture multi-scale contextual infor-

mation without reducing the resolution of feature maps, addressing the challenge
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of segmenting objects at multiple scales.

Techniques like Conditional Random Fields (CRFs) are often integrated as

post-processing steps to refine the segmentation boundaries by enforcing spatial

consistency. Moreover, the rise of generative adversarial networks (GANs) has

introduced new avenues for semi-supervised and unsupervised segmentation, where

the discriminator network helps ensure the plausibility of segmentations even with

limited labeled data. The continuous evolution of segmentation models is driven

by the ever-growing datasets and computational resources, enabling the training

of deeper and more sophisticated networks.

These advancements not only push the boundaries of segmentation accuracy

but also expand the applicability of these models to diverse domains, from real-

time video segmentation for augmented reality applications to high-precision tis-

sue segmentation in medical diagnostics. As the field progresses, challenges such

as handling occlusions, achieving real-time performance, and generalizing to un-

seen data remain active areas of research, ensuring that segmentation models will

continue to be a focal point of innovation in computer vision.

3.4.1 SegNet

Convolutional Encoder-Decoder
 

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Figure 3.6 An illustration of the SegNet architecture[5]. There are no fully connected layers
and hence it is only convolutional. A decoder upsamples its input using the transferred pool
indices from its encoder to produce a sparse feature map(s). It then performs convolution with a
trainable filter bank to densify the feature map. The final decoder output feature maps are fed
to a soft-max classifier for pixel-wise classification.

SegNet comprises an encoder network and a corresponding decoder network,

followed by a final pixel-wise classification layer, as depicted in Fig. 3.6. The en-

coder network encompasses 13 convolutional layers, mirroring the initial 13 layers

of the VGG16 network devised for object classification. Consequently, the train-

ing process can commence with weights pre-trained for classification on extensive

datasets [118]. To maintain higher-resolution feature maps at the deepest encoder

output, the fully connected layers are discarded, resulting in a significant reduction
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in the number of parameters in the SegNet encoder network (from 134M to 14.7M)

compared to other recent architectures [119]. Each encoder layer corresponds to a

decoder layer, resulting in a decoder network with 13 layers. The ultimate decoder

output is fed into a multi-class softmax classifier to generate class probabilities for

each pixel independently.

In the encoder network, each convolutional layer convolves with a filter bank

to generate a set of feature maps, followed by batch normalization [120] and rec-

tified linear activation (ReLU) max(0, x). Subsequently, max-pooling with a 2 × 2

window and stride 2 (non-overlapping window) is applied, reducing the output by

a factor of 2. Max-pooling achieves translation invariance over minor spatial shifts

in the input image, providing a broader input image context for each pixel in the

feature map. However, successive layers of max-pooling and sub-sampling sacri-

fice spatial resolution for enhanced translation invariance, which is detrimental to

boundary delineation crucial for segmentation. Hence, it’s essential to preserve

boundary information in the encoder feature maps before sub-sampling. If mem-

ory constraints during inference are not an issue, storing all encoder feature maps

(after sub-sampling) is feasible. However, practical applications often face memory

limitations. To address this, we propose a more efficient storage method, retaining

only the max-pooling indices, i.e., the locations of the maximum feature value in

each pooling window, for each encoder feature map. This can be accomplished

using 2 bits for each 2 × 2 pooling window, significantly reducing memory con-

sumption compared to storing feature maps in floating-point precision. Although

this lower memory storage incurs a slight loss of accuracy, it remains suitable for

practical applications.

In the decoder network, each decoder utilizes the memorized max-pooling

indices from the corresponding encoder feature maps to upsample its input feature

maps, producing sparse feature maps. This decoding process, illustrated in Fig.

3.7, is followed by convolution with a trainable decoder filter bank to generate

dense feature maps, which then undergo batch normalization. Notably, the decoder

corresponding to the first encoder, closest to the input image, produces a multi-

channel feature map, despite its encoder input having 3 channels (RGB), unlike

other decoders in the network. The high-dimensional feature representation at

the final decoder output is fed into a trainable softmax classifier, classifying each

pixel independently. The softmax classifier output is an image of probabilities

with K channels, where K is the number of classes. The predicted segmentation

corresponds to the class with the maximum probability at each pixel.
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Figure 3.7 a, b, c, d represent values within a feature map[5]. In SegNet, the max-pooling indices
are employed for upsampling (without learning) the feature map(s), which are then convolved with
a trainable decoder filter bank. Conversely, FCN achieves upsampling by learning to deconvolve
the input feature map and adding the corresponding encoder feature map to generate the decoder
output. This feature map corresponds to the output of the max-pooling layer (comprising sub-
sampling) in the corresponding encoder. Notably, FCN does not incorporate trainable decoder
filters.

3.4.2 UNET

The architecture of the network is depicted in Fig. 3.8. It comprises a con-

tracting path (left side) and an expansive path (right side). The contracting path

adheres to the typical convolutional network structure. It involves iteratively ap-

plying two 3x3 convolutions (without padding), each succeeded by a rectified linear

unit (ReLU), and a 2x2 max-pooling operation with a stride of 2 for downsampling.

With each downsampling iteration, the number of feature channels doubles. Each

step in the expansive path entails upsampling the feature map, followed by a 2x2

convolution (termed "up-convolution") to halve the number of feature channels,

concatenation with the correspondingly cropped feature map from the contracting

path, and two 3x3 convolutions, each followed by a ReLU. Cropping is necessary

due to the loss of border pixels in every convolution. In the final layer, a 1x1

convolution is employed to map each 64-component feature vector to the desired

number of classes. Overall, the network comprises 23 convolutional layers.

To ensure smooth tiling of the output segmentation map, it is crucial to choose

the input tile size such that all 2x2 max-pooling operations are applied to a layer

with an even x- and y-size.

The U-Net architecture revolutionized biomedical image segmentation and

has since been applied across various domains. Presented in the 2015 paper "U-

Net: Convolutional Networks for Biomedical Image Segmentation" by Olaf Ron-

neberger, Philipp Fischer, and Thomas Brox, it was tailored to achieve precise

segmentation with limited training data, a common scenario in medical imaging.

Its hallmark U-shaped design integrates down-sampling and up-sampling paths,
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Figure 3.8 U-net architecture (illustrated for a resolution of 32x32 pixels at the

lowest scale). Each blue rectangle represents a multi-channel feature map, with

the number of channels indicated at the top. The x-y dimensions are displayed

at the bottom left corner of each rectangle. White rectangles indicate duplicated

feature maps. Arrows indicate the various operations.

facilitating context capture and accurate localization.

Comprising a contracting path and an expansive path, the U-Net model mir-

rors traditional convolutional networks. The contracting path employs convolu-

tional and pooling layers to decrease image dimensions while enhancing feature

map depth. Each step involves dual convolutional layers with ReLU activations

followed by max-pooling, halving the image size.

Conversely, the expansive path employs up-convolutions to restore spatial di-

mensions and fuse high-resolution features from the contracting path via skip con-

nections. These connections allow the model to leverage fine-grained information

from earlier layers. Concatenating feature maps from both paths ensures consid-

eration of global and local features during reconstruction, yielding high-resolution

segmentation maps with precise object delineation.

A key advantage of U-Net is its efficacy with limited datasets, crucial in med-

ical imaging where large annotated datasets are scarce due to privacy concerns and

annotation complexity. U-Net addresses this challenge through data augmentation

techniques such as elastic deformations and intensity variations, bolstering gener-

alization to unseen data. Its symmetrical architecture and skip connections enable

robust performance with scant training samples.
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U-Net has excelled in diverse biomedical tasks including cell tracking, liver

segmentation, and brain tumor delineation. Its success spurred variants like 3D U-

Net for volumetric data and attention U-Net incorporating attention mechanisms

for complex scenes.

Beyond biomedicine, U-Net finds applications in satellite image segmentation,

autonomous driving, and agriculture. In satellite imaging, it segments land cover

types and identifies changes over time. In autonomous driving, it delineates road

lanes, vehicles, and pedestrians. In agriculture, it aids in crop segmentation, disease

detection, and yield estimation, enhancing farming efficiency.
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CHAPTER 4. METHODOLOGY

4.1 Problem Statement

Consider (x, y) ∼ P (X ,Y), where x ∈ RN×C×H×W and y ∈ RN×L×H×W are

input data and corresponding ground truth, respectively. C, L are the number of

image channels and categories, respectively. N , H, and W are the total number

of training samples, height, and width of the image, separately. The segmentation

problem is represented in Eq. (4.40).

L(x, y) = 1

B

B−1∑
i=0

L−1∑
l=0

Ll(xi, yi), (4.40)

where Ll(xi, yi) = − log
(

exp{x̂l
i}∑L−1

l′=0
exp{x̂l′

i }

)
yli denotes the class-wise loss on sample xi ∈

RC×H×W and its corresponding ground truth yi ∈ RL×H×W . x̂li, y
l
i ∈ RH×W are

the predicted mask and the ground-truth of channel l (which represents class l),

respectively.

4.2 Imbalance among label masks

One major challenge in image segmentation is the class imbalance in label

masks (see Fig. 4.1). Larger masks contribute more significantly to the loss of

function than smaller masks, leading to a bias towards dominant classes. Specifi-

cally, we come over the class-wise loss component, which can be represented as:

Ll(xi, yi) = −
HW∑
j=0

log
( exp{x̂li,j}∑L−1

l′=0 exp{x̂l
′

i,j}

)
yli,j (4.41)

= −
HW∑
j=0

log
( exp{x̂li,j}∑L−1

l′=0 exp{x̂l
′

i,j}

)
I(yli,j = 1) = Sl

i × ℓ̄l(xi, yi),

where Sl
i and ℓ̄l(xi, yi) denote the size of label l mask and the cross-entropy value on

class l for image i, respectively, where Sl
i =

∑HW
j=0 1(yli,j = 1). While the traditional

approach is rooted in classification problems, in segmentation tasks, the loss is

adjusted based on the mask size Sl
i. Consequently, to ensure uniformity in gradient

magnitude, we diminish the loss by the label mask size of each instance. This

adjustment guarantees that all class-specific loss pixels receive equal consideration

within the collective loss function.

4.3 Pixel-wise Adaptive Traning with Loss Scaling

The summary of the methodology is shown in Fig. 4.2. To design an adaptive

pixel-wise loss scaling, we first decompose the conventional segmentation function
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Figure 4.1 Quantitative analysis on the imbalance in mask size among classes.

The vertical axis illustrates the mask size calculated by the total number of pixels,

which are associated with the corresponding mask. The horizontal axis shows

different masks that potentially appear in the ground truth. 4.1a) While road

and vegetation take 50000 pixels and 60000 pixels, respectively, cars account for

around 1000 pixels. 4.1b) Not only road and vegetation but also walking and sky

take roughly 99% proportion, compared to cars. 4.1c) Void and build take nearly

70000 pixels and 60000 pixels, under 1000 pixels are accounted by sign, and no car

appears. 4.1d) Cars take roughly 20000 pixels, though their masks’ sizes are much

bigger than the ones in Figs. 4.1a and 4.1b.
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Figure 4.2 Overall methodology. 1) Training procedure: an input image xi is

fed into a typical encoder-decoder model architecture to produce output x̂i. This

prediction’s logits are then adjusted to create a weight tensor, which has the same

size as x̂i. The normalized x̂i is multiplied by the weight tensor to balance the

dominant logits. Finally, the loss value is obtained using the proposed PAT loss

function. 2) Logits Adjustment: The logits vector is normalized by the Softmax

function, added by a tensor of −1, and scaled by the exponential function to find

the inverse dominant coefficients βi,j. Then, these coefficients are normalized into

a range of [0, 1] to form the weight tensor.

into a pixel-wise function (refer to Eq. (4.42)), which is derived from Eq. (4.40).

L(x, y) = − 1

B

B−1∑
i=0

HW∑
j=1

[
L−1∑
l=0

yli,j log
( exp{x̂li,j}∑L−1

l′=0 exp{x̂l
′

i,j}

)]
, (4.42)

where x̂li,j is the logits prediction of sample i at pixel j with regard to category l.

In segmentation problems, the class is considered by a composition of many

pixels over the masks. We hypothesize that the learning in each class may occur

diversely according to the classification of different pixels. Therefore, we propose

the pixel-wise adaptive (PAT) loss via the pixel-wise adaptive coefficient set βi,j ∈
RL =

[
β0
i,j , β

1
i,j , · · · , β

L−1
i,j

]
.

L(x, y) = − 1

B

B−1∑
i=0

HW∑
j=1

[
L−1∑
l=0

βl
i,j ×

yli,j

Sl
i

log
( exp{x̂li,j}∑L−1

l′=0 exp{x̂l
′

i,j}

)]
. (4.43)

Our key idea is to control the PAT loss using βi,j. Essentially, βi,j represents

a tensor with dimensions identical to the logits x̂i,j. Through the pixel-wise multi-

plication, βi,j effectively modulates the pixel-wise loss components. Calculation of

36



PPVs
00.10.10.20.6

-1-1-1-1-1

-1-0.9-0.9-0.8-0.4 0.30.40.40.40.6

3.32.52.52.51.6 3.30.180.180.180.07

Figure 4.3 Illustration the PAT procedure of adjusting the logits’ value to tackle

the imbalance in dominant probability from categories whose big mask size.

0.30.711

0.80.200

PAT

Figure 4.4 The process of adaptive gradient scaling in PAT. Specifically, the chan-

nels with no mask can easily be adapted. Therefore, the problem of adaptive

gradient scaling can be reduced to two cases.

βi,j based on the logits x̂i,j is as follows:

βi,j =
1

exp {(p(x̂i,j)− 1 + ϵ)/T}
, (4.44)

where p(x̂i,j) =
[
exp{x̂li,j}/

∑L−1
l′=0 exp{x̂

l′

i,j}
]L−1

l=0
indicates the output of the softmax
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Figure 4.5 In addition to Fig. 4.3, Fig. 4.5 shows the difference in scaling coeffi-

cient between PAT and Focal[7], that PAT (smooth lines) (i) puts a higher weight

on low confidence pixel and (ii) keeps low scaling coefficients for high confidence

pixels. Otherwise, Focal (dash line), puts zero scalarization on well-classified pixels

that may cause forgetfulness of frequent or big mask size categories.

activation which normalize the logits vector elements into probability range of [0, 1).

We define T as a temperature coefficient and ϵ as an arbitrary constant. By tuning

the βi,j according to each pixel-wise vector x̂i,j = {x̂li,j | l ∈ {0, . . . , L − 1}}, our

proposed coefficient hinges on two key concepts: firstly, equalizing the loss value

across various logits, and secondly, preventing negative transfer in well-classified

results. Further analysis is presented in Section 5.2. Additionally, in Eq. (4.43), we

normalize the loss across all components by dividing by Sl
i. This approach allows

us to penalize loss components that have a dominant size relative to others, thereby

facilitating the homogenization of class-wise gradient magnitudes.
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CHAPTER 5. THEORETICAL ANALYSIS

5.1 Generalization of PAT on special case

In numerous scenarios, βi,j may encounter near-zero logit values, potentially

causing value explosions. This occurrence can lead to computational errors in prac-

tice. To mitigate this issue, we introduce temperature coefficients T and a constant

ϵ, effectively preventing the value explosion of βi,j. Moreover, near-zero logit values

are often associated with the absence of label masks. Consequently, through the

computation of the joint loss function, pixel-level loss values are frequently nullified

to 0 rather than undergoing explosion (see Fig. 4.4).

5.2 Analysis on the PAT to the logits imbalance

Experimentally, Focal loss performance is lower than current approaches,

through its simple and optimized implementation. To have a comprehensive under-

standing of PAT robustness to the imbalance rare object segmentations, we com-

pare the loss value of PAT and Focal[7] at different logit probabilities in Fig. 4.5,

yielding two significant observations.

Table 5.1 Adaptive loss value comparison between Focal loss and PAT loss func-

tions with different adaptive coefficients: γ ∈ {2, 5} and T ∈ {2, 5}. According to

the analysis, when the logits prediction approach 1 indicates a well-classified case,

the adaptive loss value of Focal loss is zero, which potentially makes the gradient

trajectory unstable.

p(x̂i,j) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Focal (γ = 2) 1.87 1.03 0.59 0.33 0.17 0.08 0.03 0.01 0.0

PAT (T = 2) 1.47 1.08 0.85 0.68 0.54 0.42 0.31 0.2 0.1

Focal (γ = 5) 1.36 0.53 0.2 0.07 0.02 0.01 0.0 0.0 0.0

PAT (T = 5) 1.92 1.37 1.05 0.81 0.63 0.47 0.34 0.21 0.1

Firstly, by parameterizing the loss function with the PAT scaling factor, we

observe more balanced learning across classes with varying logit probabilities. Sec-

ondly, in contrast to Focal, we notice that losses associated with high-probability

logits are zero-weighted (refers to Table 5.1). This phenomenon can prevent pos-

itive transfer on well-classified samples. In comparison, the PAT-scaling parame-

terized loss function fosters equitable learning while maintaining loss information

for high-probability logits, thus allowing the training process to retain valuable
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knowledge from well-classified samples.

5.3 Analysis on time and space complexity

Table 5.2 theoretically suggests that traditional Cross-Entropy, Focal, and

PAT have the lowest complexity in both time and space, compared to LDAM and

BLV, which require extensive supporting tensors (∆y, δ(σ), and c) to manipulate

margin probability distribution. To conclude, PAT fulfills all requirements indi-

Table 5.2 Theoretical time (O) and space (V) complexity comparison between

state-of-the-arts and PAT. Denote F as loss formula, γ is scale coefficient of

Focal[7], zy, zi are logits of channel y and i, respectively, σ is standard devia-

tion for BLV[8], and δ is a distribution generator.

Method F O V

CE − log(p(x)) O(BCHW ) O(BCHW )

Focal −(1− p(x))γ log(p(x)) O(BCHW ) O(BCHW )

LDAM − log(
exp(zy−∆y)∑
i exp(zi−∆i)

) O(2BCHW ) O(2BCHW ) +O(2C)

BLV − log(
exp(zy+cyδ(σ))∑
i exp(zi+ciδ(σ))

) O(2BCHW ) O(3BCHW ) +O(2C)

PAT − exp{(1− p(x))/T} log(p(x)) O(BCHW ) O(BCHW )

cated in Section . PAT can tackle long-tailed rare object segmentation, especially

in detecting objects with a small portion accounting in the mask while maintaining

the performance of high-confidence classes(refers to Section 4.3, Section 5.2, and

Figure 4.5). PAT acquired low-cost computation compared to the current state-

of-the-art by integrating a simple weighting mechanism requiring neither further

supporting tensors nor calculation on them.

5.4 Analysis on the PAT to the gradient magnitude homogeniza-
tion

Magnitude differences of the gradients across tasks may lead to a subset of

tasks dominating the total gradient, and therefore to the model prioritizing them

over the others [121]. This phenomenon happens obviously in the segmentation

task. To have a comprehensive understanding, from Eq. (4.41) we consider the

gradient across classes as follows:

∇Ll(x, y) = Sl
i · ∇ℓ̄l(xi, yi). (5.45)
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Therefore, the gradient norm proportion between classes l and l′ is as follows:

∥∇Ll(x, y)∥
∥∇Ll′(x, y)∥

=
Sl
i · ∥∇ℓ̄l(xi, yi)∥

Sl′
i · ∥∇ℓ̄l′(xi, yi)∥

(5.46)

As the mask size Sl
i becomes divergent across classes in one task, the gradient

magnitude is diverse, thereby biasing the learning towards the subset of classes with

dominant mask sizes. By applying the normalization via mask size Sl
i, as mentioned

in Eq. (4.43), we can have the model update focus on the labels’ canonical loss

ℓ̄l(xi, yi). This approach bears resemblance to gradient magnitude normalization

techniques discussed in [121, 122], facilitating more balanced contributions among

classes during learning. Nevertheless, by normalizing directly according to the

mask size, we can notably decrease computational complexity compared to utilizing

gradient norms, as seen in the previously mentioned studies.

41



CHAPTER 6. EXPERIMENTAL EVALUATIONS

We conducted experiments on three popular datasets: OxfordPet[1], CityScapes[2],

and NyU[3] whose frequency of classes is considerably sample-wise imbalanced

(refers to Section 6.1). The training, validating, and testing ratios are 0.8, 0.1, and

0.1, respectively. We compare PAT with Focal[7], Class Balance Loss (CB)[123], the

combination of CB and Focal (CBFocal)[123], Balance Meta Softmax (BMS)[124],

Label Distribution Aware Margin Loss (LDAM)[16], and Balance Logits Variation

(BLV)[8] evaluated by mean Intersection over Union (mIoU %), pixel accuracy (Pix

Acc %), and Dice Error (Dice Err). The number of rounds of all experiments is

fixed to 30000 rounds.

We tuned the hyperparameter of each loss function to find the best case.

Specifically, 1) Focal and the combination of Class Balance and Focal are trained

with different values of γ ∈ {0.5, 1, 2, 3, 4, 5}[7, 123]. 2) In the LDAM, we set the

parameter µ of 0.5 as the default setting in[125] and trained with different scale

s ∈ {10, 20, 30, 50}. 3) For the BLV, we applied types of distribution: Gaussian,

Uniform, and Xaviver along with different standard deviation σ ∈ {0.5, 1, 2}. 4)

Hyper-parameter tuning is conducted on PAT with values of T ∈ {5, 10, 20, 50}
(refer to Section 6.2.2).

6.1 Comparisons to state-of-the-arts (SOTA)

In Table 6.1, the PAT outperforms the others in almost all settings from 0.09%

to 2.2% in mIoU and from 0.07% to 0.36% in pix acc, respectively. While the dice

error of BLV and PAT are identically 0.23 in the Oxford dataset, PAT’s dice error in

CityScapes and NyU datasets (two higher number of categories dataset) decreased

around 0.02 and 0.39, respectively. Regarding Fig. 6.1, models trained by PAT

can segment objects with mIoU of 76.22% and pix acc of 85.80%, increasing 2.2%

and 0.36%, respectively. In detail, these figures illustrate visually how PAT can

balance the class-wise consideration.

First, PAT can enhance models on detecting long-tailed rare objects by putting

a higher weight on the class-wise loss function (refer to Figs. 4.3, 4.5). In the sec-

ond column of Fig. 6.1 (Munich domain), under a long-tailed scenario where most

parts of the image are road and sky, while the building owns just a small propor-

tion, the model trained by PAT can segment fully the road and sky as well as most

of the building. This phenomenon is also true with models trained on OxfordPetIII

(refer to Fig. 6.2).
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Table 6.1 Overall Performance of 8 baselines (i.e. Vanilla Softmax, Focal, Class

Balance Loss, Class Balance Focal) and proposed method among three different

scenarios including OxfordPetIII, CityScape, and NyU datasets. In detail, the bold

number indicates the best performance, while ↑ and ↓ show "higher is better" and

"lower is better", respectively. Note that all experiments shown in this table are

trained using SegNet[5] architecture.

Method

Dataset

OxfordPetIII[1] CityScape[2] NyU[3]

mIoU↑ Pix Acc↑ Dice Err↓ mIoU↑ Pix Acc↑ Dice Err↓ mIoU↑ Pix Acc↑ Dice Err↓

CE 76.14 91.21 0.23 73.83 85.31 0.66 18.05 53.50 1.80

Focal

(γ = 2)
75.76 91.17 0.30 74.02 85.44 0.56 15.14 51.07 1.75

CB 76.60 90.90 0.20 72.26 81.33 0.69 18.56 52.17 1.94

CBFocal

(γ = 2)
76.02 90.54 0.26 71.17 80.70 0.72 17.31 50.46 1.76

BMS 13.22 25.45 1.28 8.15 11.80 3.08 12.27 22.84 2.40

LDAM

(µ = 0.5, s = 20)
75.43 90.97 0.78 74.80 85.20 2.27 19.59 52.59 2.30

BLV

(Gaussian, σ = 0.5)
76.24 91.22 0.23 74.21 85.37 0.53 18.37 52.62 1.90

PAT (Ours)

(T = 20)

76.69

↑ 0.09
91.28

↑ 0.07
0.23

76.22

↑ 2.2
85.80

↑ 0.36
0.51

↓ 0.02
21.41

↑ 2.85
55.57

↑ 2.07
1.36

↓ 0.39

Second, as aforementioned, the proposed method can tackle underlying issues

in detecting long-tailed rare objects by using scalarization coefficients without for-

getting the well-classified categories (refer to Fig. 4.5). Visualization performance

in Berlin and Leverkusen (refer to Fig. 6.1), are two typical examples. Other

SOTAs tend to misclassify the sky and the road, even though the sky and road ac-

count for a considerable proportion. This phenomenon is not an exception, which

also appears in the Leverkusen example, where other SOTAs misclassify car masks,

which take 40% in mask size of the whole portion.

6.1.1 OxfordPetIII Dataset[1].

Oxford dataset contains 37 categories of dogs and cats with roughly 200 im-

ages for each type. The mask ground truth of each image includes three classes:

background, boundary, and main body of the animals. All images are collected

with a high resolution of 640 × 340 pixels, which is then resized to 256 × 256 pix-

els. In this dataset, the biggest obstacle is to segment the boundary of the animal

which is very small and not easily distinguishable. In training the image is prepro-

cessed by diving the max value of that image. The labels, on the other hand, are

converted into tensors of one-hot vectors at pixel levels.
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Figure 6.1 Segmentation visualization of models trained by the proposed method

PAT and other baselines on the CityScapes dataset. The two first rows are the

original image on the test set and its corresponding ground truth, respectively. The

third row illustrates the performance in visualization of the proposed method. We

sample four typical examples from four corresponding different domains containing

Berlin, Munich, Bielefeld, and Leverkusen.

6.1.2 CityScapes Dataset[2].

CityScapes dataset contains roughly 5000 images with a high resolution of

1024×512 pixels, Note that adjusting the image size does not change the proportions

among classes. The ground truth in this dataset is labeled in fine mode, in which

there are no boundaries among classes. This dataset faced a big issue in the

imbalance among classes (refers to Fig. 4.1). There are potentially many categories
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that only take a small account of the mask as well as a large number of ones that

are not included.

6.1.3 NyU Dataset[3].

The NyU dataset contains roughly 1000 samples, with 1000 different cate-

gories. Each sample contains an image and label whose size of 340× 256 pixels. As

in the CityScapes dataset, NyU also faces a big challenge in segmenting long-tailed

rare objects. In the preprocessing stage, the image is normalized into the range

of [0, 1], and its corresponding ground truth is converted into a tensor of one-hot

vectors at pixel levels.

6.2 Ablation studies
6.2.1 Model integration analysis.

To guarantee the proposed method’s adaptability and independence in dif-

ferent deep architecture designs[16, 126, 22, 17, 18, 19], we analyze the perfor-

mance on 3 additional different model structures containing UNet[6], Attention

UNet[127] (AttUNet), Nested UNet[128] (UNet++), DeepLabV3[129] (DLV3), and

DeepLabV3+[10] (DLV3+). The hyperparameter settings are presented in Table

6.1. The quantitative performance results of this ablation test are shown in Table

6.2. In detail, we compare the performance among methods conducted in each

model. The corresponding colors of UNet, AttUNet, UNet++, DLV3, and DLV3+

are green, blue, yellow, red, and purple, respectively, which indicate the best cases.

According to Table 6.2, PAT outperforms the other baselines in CityScapes

experiments, which is the highest number of classes dataset. Especially in Unet++

experiments, the mIoU and the pix acc of CityScapes are above 75% and 85%, com-

pared to under the two aforementioned values in BLV[8] and LDAM[125]. Although

the Class-Balance loss function tends to work well with the OxfordPetIII dataset

(3 distinct categories), which reaches 78.71% and 76.60% of mIoU (refer to Tables

6.16.2) trained by UNet and SegNet, respectively, CB exhibit low performance on

datasets with higher number of categories.

LDAM and BLV, otherwise, achieve higher performance as opposed to PAT

from 0.01% to 0.04% in the NyU dataset. In detail, LDAM achieves 55.22% of pix

acc using AttUNet and BLV reaches 54.67% and 54.93% of pix acc using UNet and

UNet++, respectively. However, performance in mIoU of PAT outperforms LDAM

and BLV from 1% to 3% (refer to Table 6.2). mIoU is more crucial than pix acc,

which not only indicates the correctness but also the completeness of segmented

objects[130]. PAT, otherwise, outperforms other baselines in both the CityScapes

dataset and the NyU dataset on various types of model architecture, which achieve
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Table 6.2 Quantitative comparisons between baselines and the proposed method

in three datasets and three model architecture designs: UNet, Attention UNet, and

Nested UNet whose encoder is ResNet101[9]. Note that the green, blue, yellow,

red and purple colors indicate the outperforming cases trained on UNet, AttUNet,

UNet++, DLV3, and DLV3+ respectively.

Method Model Encoder
OxfordPetIII CityScapes NyU

mIoU↑ Pix Acc↑ mIoU↑ Pix Acc↑ mIoU↑ Pix Acc↑

CE

UNet

ResNet101

78.61 92.40 74.08 83.63 15.36 50.97

AttUnet 78.83 92.52 73.28 87.33 16.46 51.35

UNet++ 78.18 92.30 72.91 82.87 16.48 51.42

DLV3 79.06 93.72 77.42 92.36 21.74 57.22

DLV3+ 79.82 94.23 77.73 92.94 22.34 57.86

Focal

(γ = 2)

UNet

ResNet101

78.27 92.24 73.53 83.69 15.42 51.03

AttUnet 78.31 92.30 73.93 83.10 16.46 51.32

UNet++ 77.78 92.15 74.21 83.52 16.72 51.41

DLV3 79.53 93.98 77.91 92.78 22.01 57.64

DLV3+ 79.97 94.67 78.18 93.06 22.35 57.92

CB

UNet

ResNet101

78.71 91.99 73.58 83.19 20.18 54.91

AttUnet 79.26 92.31 74.47 83.76 19.07 54.66

UNet++ 78.51 91.96 74.85 83.66 19.17 53.23

DLV3 79.20 93.87 77.43 92.52 21.86 57.28

DLV3+ 79.83 94.31 77.77 93.12 22.60 57.96

CBFocal

(γ = 2)

UNet

ResNet101

78.13 91.61 73.74 83.01 17.82 54.14

AttUnet 78.82 92.02 73.42 83.18 18.76 54.26

UNet++ 77.76 91.54 72.58 82.45 17.09 53.02

DLV3 79.39 94.02 77.78 92.68 22.01 57.71

DLV3+ 80.41 94.65 78.21 93.32 22.93 58.40

LDAM

(µ = 0.5,

s = 20)

UNet

ResNet101

78.68 92.44 73.42 83.81 18.04 54.33

AttUnet 78.71 92.51 73.73 83.46 19.81 55.22

UNet++ 78.06 92.20 73.55 84.64 19.04 52.99

DLV3 79.62 94.13 77.87 92.79 22.28 57.85

DLV3+ 80.26 94.77 78.40 93.55 23.04 58.63

BLV

(Gaussian,

σ = 0.5)

UNet

ResNet101

78.25 92.25 74.72 84.74 18.32 54.67

AttUnet 78.97 92.46 74.45 84.56 19.45 54.72

UNet++ 78.37 92.23 74.93 84.86 19.81 54.93

DLV3 80.13 94.32 78.04 93.04 22.40 57.99

DLV3+ 80.17 94.52 78.42 93.59 23.16 58.71

PAT (Ours)

(T = 20)

UNet

ResNet101

78.63 92.27 74.85 85.51 21.18 54.22

AttUnet 79.37 92.72 74.57 85.56 21.44 54.41

UNet++ 79.14 92.51 75.24 85.80 20.66 54.86

DLV3 80.34 94.16 78.48 93.10 22.66 58.41

DLV3+ 80.42 94.82 78.63 94.01 23.72 59.09

74.85%, 74.57%, and 75.24% of mIoU and 21.18%, 21.44%, and 20.66% of mIoU on

UNet, AttUNet, and UNet++, respectively. Figure 6.2 illustrates that PAT can

segment the object completely, compared to other baselines that tend to misclassify

the objects’ boundary.

6.2.2 Temperature configurations.

We perform various experiments of PAT with different values of temperature

T , which are {5, 10, 20, 50} (refers to Table 6.3). This ablation test analyzes how
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temperature parameter T affects the performance of the segmentation model. To

make a fair comparison, we conduct all experiments with three related datasets as

mentioned in Section 5.4 with three different types of model architecture including

SegNet, UNet, and DLV3+.

Table 6.3 Quantitative Ablation Results of various values of temperature parame-

ter T . The experiments are conducted using two typical models including UNet[6]

and SegNet[5].

Model T
OxfordPetIII CityScapes NyU

mIoU↑ Pix Acc↑ mIoU↑ Pix Acc↑ mIoU↑ Pix Acc↑

SegNet

T = 5 76.83 91.42 73.86 84.82 19.35 53.39

T = 10 76.69 91.40 74.76 85.14 19.49 54.43

T = 20 76.69 91.28 76.22 85.80 21.41 55.57

T = 50 76.87 91.49 76.21 85.76 21.41 54.29

UNet

T = 5 78.58 91.42 74.17 84.82 18.23 52.05

T = 10 78.74 92.35 74.57 85.34 19.49 54.13

T = 20 78.63 92.27 74.85 85.51 21.18 54.22

T = 50 78.54 92.29 74.29 85.56 21.32 54.26

DLV3+

T = 5 81.97 94.49 78.42 93.66 23.58 58.9

T = 10 82.35 94.81 78.61 93.76 23.65 59.04

T = 20 82.42 94.82 78.63 94.01 23.72 59.09

T = 50 82.58 94.97 79.02 94.45 23.32 59.59

CityScapes dataset whose number of classes is much higher, which is 20, com-

pared to 3 in OxfordPetIII, is indicated to be more sensitive to the temperature

parameter T . According to Table 6.3, The mIoU and pix acc of CityScapes in-

crease from 73.86% to 76.22% and from 84.82% to 85.76%, respectively using SegNet

model architecture. SegNet model performance in the NyU dataset, on the other

hand, achieves from 19.35% to 21.41% in mIoU and from 53.39% to 54.29% in pix

acc. The UNet model is not an exception, whose performance on CityScapes and

NyU increases 0.7% in mIoU, 1.7% in pix acc, and 3.1% in mIoU, 2.2% in pix acc,

respectively. These quantitative results suggest that the temperature parameter T

is needed to make the proposed method robust to different datasets whose different

numbers of classes.

6.2.3 Class-wise performance evaluation

We investigate the class-wise model performance based mIoU metric on CityScapes

Dataset using DeepLabV3+ model architecture (refers to Table 6.4). Table 6.4 sug-

gests that PAT can improve the model performance on both head and tail classes,

compared to the current state-of-the-art.
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Method PAT (Ours) Focal CB CBFocal LDAM BLV

Model

UNet

DLV3

DLV3+

(a) Image (b) Label

Figure 6.2 Visualization of segmentation performance on OxfordPetIII dataset

trained by different model architectures including UNet, AttUNet, and NestUNet.

Table 6.4 Class-wise experimental evaluation on CityScapes[2] Dataset using

DLV3+[10] based mIoU metric. Note that bold and underlined number indicates

the highest and second-highest performance cases.

Method R
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id
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Io
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CE 99.11 78.60 92.97 63.32 59.07 61.34 64.07 73.82 94.10 52.56 95.60 78.40 56.13 94.89 84.84 85.69 82.17 70.44 68.16 97.79 77.73

Focal 99.48 78.34 92.89 63.62 58.91 61.09 64.45 73.78 94.44 53.04 96.09 78.51 56.55 94.66 85.32 85.52 81.90 70.21 68.34 97.71 78.18

CB 99.33 78.67 92.95 63.58 59.24 61.27 64.02 73.59 94.05 52.70 95.14 78.45 55.96 94.79 85.03 85.55 82.25 70.71 68.97 97.69 77.77

CBFocal 99.37 78.78 93.22 63.28 59.29 61.27 64.54 74.02 94.47 52.55 96.06 78.80 56.40 95.03 85.3 85.84 82.48 70.62 68.90 98.12 78.21

LDAM 99.47 79.60 93.09 63.54 59.73 61.19 65.42 74.40 94.22 52.28 96.76 78.93 56.51 95.17 85.68 85.98 82.54 71.30 68.40 97.84 78.40

BLV 99.12 79.97 93.44 63.12 59.49 61.86 65.52 74.69 95.03 53.13 96.49 79.95 57.36 95.31 86.39 86.35 83.57 71.14 68.83 98.71 78.42

PAT 99.76 79.92 93.89 64.23 60.11 61.11 65.28 75.63 94.95 54.38 95.64 79.19 57.60 95.80 86.52 86.37 84.32 70.23 68.69 99.15 78.63

6.2.4 Training utilization.

Owing to the demand of taking full advantage of big data which is not only a

large scaled number of samples but also high pixel resolution[131], a method that

is low cost in both computation and memory usage is essential. To investigate

the performance of different methods, we use three metrics including the average

training time (seconds/epoch), the average memory acquisition, and the average

GPU utilization. We calculate these metrics in each epoch and then take the

average value once the training is done.

Fig. 6.3 suggests that PAT (pink circle), which includes the LA and PAT
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can adapt to a wide range of hardware specifications. While the proposed method

acquires roughly 15GB, recent methods (i.e. BLV, LDAM) acquire nearly 17GB

and 20GB in the OxfordPetIII and NyU datasets, respectively. In the CityScapes

dataset, the proposed method is one of the three lowest GPU-utilized methods,

along with the vanilla cross-entropy loss function, which also refers to the lowest

time-consumed method.
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Figure 6.3 Performance comparison between baselines and our proposed method

in three different scenarios containing OxfordPetIII, CityScapes, and NyU. Perfor-

mance metrics include Training Time (seconds/epoch), Average Memory Acquisi-

tion shown in Gigabyte (GB) units, and the GPU Utilization proportion (%).

6.3 Limitations

There are two main types of imbalance: class imbalance (some classes appear

more common than others) and size imbalance (some objects account for more

proportion than others in one mask)[130]. PAT can tackle the issues of detecting

long-tailed rare objects as well as keeping good performance on well-classified and

large-proportion categories. However, several key areas still require improvement.

First, the amount of memory acquired by PAT is still larger than the Focal

and CE (refers to Fig. 6.3). This high computation and memory is owing to

the large number of calculations needed for the exponential function, though it is a

smooth and differentiated function along with its ability to put a high scalarization

on low confidence classes.

Second, sharing a common challenge with other techniques, PAT is notably

susceptible to domain shift. This means that logits differ significantly across dif-

ferent data domains, making it difficult to determine the optimal scaling loss coef-

ficient. Applying the model trained on one domain to others can result in perfor-

mance degradation. Future work could address this issue by incorporating domain

generalization techniques[132, 133, 134].
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CONCLUSION

General Conclusion

In this paper, we addressed the challenges of long-tailed segmentation learn-

ing by introducing a novel Pixel-wise Adaptive Training (PAT) technique. Our

approach specifically targets the imbalance in label masks and the detrimental im-

pact of class-wise relationships among various class-specific predictions. The PAT

technique comprises two key components: class-wise gradient magnitude homoge-

nization and pixel-wise class-specific loss adaptation (PCLA). Through these com-

ponents, PAT ensures equal consideration of class-wise impacts on model updates

and encourages learning from classes with low prediction confidence while guarding

against forgetting classes with high confidence. Our extensive experiments demon-

strate that PAT significantly improves performance, surpassing current state-of-

the-art methods by 2.2% on the NYU dataset, enhancing overall pixel-wise accu-

racy by 2.85%, and improving intersection over union by 2.07%, while achieving

a notable reduction in rare class detection error by 0.39% on the OxfordPetIII,

CityScape, and NYU datasets.

Development Orientation

There are several potential avenues for future work to further advance the ca-

pabilities of long-tailed segmentation learning. First, exploring the integration of

PAT with other adaptive learning techniques could provide insights into synergistic

effects and further performance enhancements. Second, extending the evaluation

to a broader range of datasets, including those from different domains and with

varying levels of class imbalance, would help in understanding the generalizability

and robustness of the PAT approach. Third, investigating the application of PAT

in real-time segmentation tasks could be beneficial for scenarios requiring rapid

adaptation to new data. Finally, incorporating self-supervised or semi-supervised

learning paradigms could reduce the reliance on labeled data, making PAT appli-

cable in more diverse and data-scarce environments.
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